Марганец

Ма́рганец — элемент 7-й группы (по устаревшей классификации — побочной подгруппы седьмой группы) четвёртого периода периодической системы химических элементов Д. И. Менделеева с атомным номером 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре). Простое вещество марганец — металл серебристо-белого цвета. Наряду с железом и его сплавами относится к чёрным металлам. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой.

История открытия

Один из основных минералов марганца — пиролюзит — был известен в древности как чёрная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом чёрной магнезии, к которому магнит «равнодушен». В 1774 году шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» (от нем. Manganerz — марганцевая руда).

Распространённость в природе

Марганец — 14-й элемент по распространённости на Земле, а после железа — второй тяжёлый металл, содержащийся в земной коре (0,03 % от общего числа атомов земной коры). Массовая доля марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его рудах, однако встречаются и самостоятельные месторождения марганца. В чиатурском месторождении (район Кутаиси) сосредоточено до 40 % марганцевых руд. Марганец, рассеянный в горных породах, вымывается водой и уносится в Мировой океан. При этом его содержание в морской воде незначительно (10−7—10−6 %), а в глубоких местах океана его концентрация возрастает до 0,3 % вследствие окисления растворённым в воде кислородом с образованием нерастворимого в воде оксида марганца, который в гидратированной форме (MnO2·xH2O) и опускается в нижние слои океана, формируя так называемые железомарганцевые конкреции на дне, в которых количество марганца может достигать 45 % (также в них имеются примеси меди, никеля, кобальта). Такие конкреции могут стать в будущем источником марганца для промышленности.

В России является остродефицитным сырьём, известны месторождения: «Усинское» в Кемеровской области, «Полуночное» в Свердловской, «Порожинское» в Красноярском крае, «Южно-Хинганское» в Еврейской автономной области, «Рогачёво-Тайнинская» площадь и «Северо-Тайнинское» поле на Новой Земле.

Минералы марганца

  • пиролюзит MnO2·xH2O, самый распространённый минерал (содержит 63,2 % марганца);
  • манганит (бурая марганцевая руда) MnO(OH) (62,5 % марганца);
  • браунит 3Mn2O3·MnSiO3 (69,5 % марганца);
  • гаусманит (MnIIMn2III)O4;
  • родохрозит (марганцевый шпат, малиновый шпат) MnCO3 (47,8 % марганца);
  • псиломелан mMnO·MnO2·nH2O (45-60 % марганца);
  • пурпурит Mn3+[PO4], (36,65 % марганца).
Смотреть:
Ванадий

Получение

  • Алюминотермическим методом, восстанавливая оксид Mn2O3, образующийся при прокаливании пиролюзита:





    4


    MnO

    2






    2


    Mn

    2






    O

    3





    +

    O

    2








    {\displaystyle {\ce {4 MnO2 -> 2 Mn2O3 + O2}}}






    Mn

    2






    O

    3





    +
    2

    Al

    2

    Mn
    +

    Al

    2






    O

    3








    {\displaystyle {\ce {Mn2O3 + 2 Al -> 2 Mn + Al2O3}}}

  • Восстановлением железосодержащих оксидных руд марганца коксом. Этим способом в металлургии обычно получают ферромарганец (~80 % Mn).
  • Чистый металлический марганец получают электролизом.

Физические свойства

Некоторые свойства приведены в таблице.
Другие свойства марганца:

  • Работа выхода электрона: 4,1 эВ
  • Коэффициент теплового расширения: 0,000022 K−1 (при 0 °C)
  • Электропроводность: 0,00695⋅106 Ом−1·см−1
  • Теплопроводность: 0,0782 Вт/(см·K)
  • Энтальпия атомизации: 280,3 кДж/моль при 25 °C
  • Энтальпия плавления: 14,64 кДж/моль
  • Энтальпия испарения: 219,7 кДж/моль
  • Твёрдость:
    • по шкале Бринелля: Мн/м²
    • по шкале Мооса: 4
  • Давление паров: 121 Па при 1244 °C
  • Молярный объём: 7,35 см³/моль

Химические свойства

Характерные степени окисления марганца: 0, +2, +3, +4, +6, +7 (степени окисления +1, +5 малохарактерны).

При окислении на воздухе пассивируется. Порошкообразный марганец сгорает в кислороде:





Mn
+

O

2







MnO

2








{\displaystyle {\ce {Mn + O2 -> MnO2}}}

Марганец при реакции с перегретым водяным паром, образует гидроксид, вытесняя водород:





Mn


+
2


H

2





O










t



Mn


(
OH
)


2






+

H

2









{\displaystyle {\ce {Mn{}+2H2O->[^{\circ }t]Mn(OH)2{}+H2\uparrow }}}

При этом слой образующегося гидроксида марганца замедляет реакцию.

Марганец поглощает водород, с повышением температуры его растворимость в марганце увеличивается. При температуре выше 1200 °C взаимодействует с азотом, образуя различные по составу нитриды.

Углерод реагирует с расплавленным марганцем, образуя карбиды Mn3C и другие. Образует также силициды, бориды, фосфиды.

С соляной и серной кислотами реагирует по уравнению





Mn


+
2


H

+




Mn

2
+



+

H

2









{\displaystyle {\ce {Mn{}+2H^{+}->Mn^{2}+{}+H2\uparrow }}}

С концентрированной серной кислотой реакция идёт по уравнению





Mn


+
2


H

2






SO

4







MnSO

4






+

SO

2






+
2


H

2





O



{\displaystyle {\ce {Mn{}+2H2SO4->MnSO4{}+SO2\uparrow +2H2O}}}

С разбавленной азотной кислотой реакция идёт по уравнению





3

Mn


+
8


HNO

3






3

Mn


(

NO

3





)


2






+
2

NO

+
4


H

2





O



{\displaystyle {\ce {3Mn{}+8HNO3->3Mn(NO3)2{}+2NO\uparrow +4H2O}}}

В щелочном растворе марганец устойчив.

Марганец образует следующие оксиды: MnO, Mn2O3, MnO2, MnO3 (не выделен в свободном состоянии) и марганцевый ангидрид Mn2O7.

Mn2O7 в обычных условиях — жидкое маслянистое вещество тёмно-зелёного цвета, очень неустойчивое; в смеси с концентрированной серной кислотой воспламеняет органические вещества. При 90 °C Mn2O7 разлагается со взрывом. Наиболее устойчивы оксиды Mn2O3 и MnO2, а также комбинированный оксид Mn3O4 (2MnO·MnO2, или соль Mn2MnO4).

При сплавлении оксида марганца (IV) (пиролюзит) со щелочами в присутствии кислорода образуются манганаты:





2


MnO

2






+
4

KOH


+

O

2






2


K

2






MnO

4






+
2


H

2





O



{\displaystyle {\ce {2 MnO2{}+ 4 KOH{}+ O2 -> 2 K2MnO4{}+ 2 H2O}}}

Раствор манганата имеет тёмно-зелёный цвет. При подкислении протекает реакция





3


K

2






MnO

4






+
3


H

2






SO

4






3


K

2






SO

4






+
2


HMnO

4






+
MnO


(
OH
)


2








+

H

2





O



{\displaystyle {\ce {3 K2MnO4{}+ 3 H2SO4 -> 3 K2SO4{}+ 2 HMnO4{}+ MnO(OH)2 v + H2O}}}

Раствор окрашивается в малиновый цвет из-за появления аниона MnO4, и из него выпадает коричневый осадок оксида-гидроксида марганца (IV).

Марганцевая кислота очень сильная, но неустойчивая, её невозможно сконцентрировать более, чем до 20 %. Сама кислота и её соли (перманганаты) — сильные окислители. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

При прокаливании перманганаты разлагаются с выделением кислорода (один из лабораторных способов получения чистого кислорода). Реакция идёт по уравнению (на примере перманганата калия)





2


KMnO

4















t




K

2






MnO

4






+

MnO

2






+

O

2








{\displaystyle {\ce {2KMnO4->[^{\circ }t]K2MnO4{}+MnO2{}+O2}}}

Под действием сильных окислителей ион Mn2+ переходит в ион MnO4:





2


MnSO

4






+
5


PbO

2






+
6


HNO

3






2


HMnO

4






+
2


PbSO

4






+
3

Pb


(

NO

3





)


2






+
2


H

2





O



{\displaystyle {\ce {2 MnSO4{}+ 5 PbO2{}+ 6 HNO3 -> 2 HMnO4{}+ 2 PbSO4{}+ 3 Pb(NO3)2{}+ 2 H2O}}}

Эта реакция используется для качественного определения Mn2+ (см. в разделе «Определение методами химического анализа»).

При подщелачивании растворов солей Mn (II) из них выпадает осадок гидроксида марганца (II), быстро буреющий на воздухе в результате окисления. Подробное описание реакции см. в разделе «Определение методами химического анализа».
В нейтральных или кислых водных растворах ион Mn2+ образует окрашенный в бледно-розовый цвет аквакомплекс [Mn(H2O)6]2+.

Соли MnCl3, Mn2(SO4)3 неустойчивы. Гидроксиды Mn(OH)2 и Mn(OH)3 имеют основный характер, MnO(OH)2 — амфотерный. Хлорид марганца (IV) MnCl4 очень неустойчив, разлагается при нагревании, чем пользуются для получения хлора:






MnO

2






+
4

HCl


MnCl

2






+

Cl

2






+
2


H

2





O



{\displaystyle {\ce {MnO2{}+4HCl->MnCl2{}+Cl2\uparrow +2H2O}}}

Нулевая степень окисления у марганца проявляется в соединениях с σ-донорными и π-акцепторными лигандами. Так, для марганца и известен карбонил состава Mn2(CO)10.

Известны и другие соединения марганца с σ-донорными и π-акцепторными лигандами (PF3, NO, N2, P(C5H5)3).

Изотопы

Марганец является моноизотопным элементом — в природе существует только один устойчивый изотоп 55Mn. Все другие изотопы марганца нестабильны и радиоактивны, они получены искусственно. Известны 25 радиоактивных изотопов марганца, имеющие массовое число А в диапазоне от 44 до 70. Наиболее стабильными из них являются 53Mn (период полураспада T1/2 = 3,7 млн лет), 54Mn (T1/2 = 312,3 суток) и 52Mn (T1/2 = 5,591 суток). Преобладающим каналом распада лёгких изотопов марганца (А < 55) является электронный захват (и иногда конкурирующий с ним позитронный распад) в соответствующие изотопы хрома. У тяжёлых изотопов (А > 55) основным каналом распада является β-распад в соответствующие изотопы железа. Известны также 7 изомеров (метастабильных возбуждённых состояний) с периодами полураспада более 100 нс.

Применение в промышленности

Применение в металлургии

Марганец в виде ферромарганца применяется для раскисления стали при её плавке, то есть для удаления из неё кислорода. Кроме того, он связывает серу, что также улучшает свойства сталей. Введение до 12—13 % Mn в сталь (так называемая сталь Гадфильда), иногда в сочетании с другими легирующими металлами, сильно упрочняет сталь, делает её твёрдой и сопротивляющейся износу и ударам (т. н. «наклёп»). Такая сталь используется для изготовления шаровых мельниц, землеройных и камнедробильных машин, броневых элементов и т. д. В «зеркальный чугун» вводится до 20 % Mn.

В 1920—1940-х годах применение марганца позволяло выплавлять броневую сталь. В начале 1950-х годов в журнале «Сталь» возникла дискуссия по вопросу о возможности снижения содержания марганца в чугуне, и тем самым отказа от поддержки определённого содержания марганца в процессе мартеновской плавки, в которой вместе с В. И. Явойским и В. И. Баптизманским принял участие Е. И. Зарвин, который на основе производственных экспериментов показал нецелесообразность существовавшей технологии. Позже он показал возможность ведения мартеновского процесса на маломарганцовистом чугуне. С пуском ЗСМК началась разработка передела низкомарганцовистых чугунов в конвертерах.

Сплав 83 % Cu, 13 % Mn и 4 % Ni (манганин) обладает высоким электросопротивлением, мало изменяющимся с изменением температуры. Поэтому его применяют для изготовления реостатов и пр.

Марганец вводят в бронзы и латуни.

Применение в химии

Значительное количество диоксида марганца потребляется при производстве марганцево-цинковых гальванических элементов, MnO2 используется в таких элементах в качестве окислителя-деполяризатора.

Соединения марганца также широко используются как в тонком органическом синтезе (MnO2 и KMnO4 в качестве окислителей), так и промышленном органическом синтезе (компоненты катализаторов окисления углеводородов, например, в производстве терефталевой кислоты окислением p-ксилола, окисление парафинов в высшие жирные кислоты).

Арсенид марганца обладает гигантским магнитокалорическим эффектом, усиливающимся под давлением.

Теллурид марганца — перспективный термоэлектрический материал (термо-ЭДС 500 мкВ/К).

Определение методами химического анализа

Марганец принадлежит к пятой аналитической группе катионов.

Специфические реакции, используемые в аналитической химии для обнаружения катионов Mn2+, следующие:

1. Едкие щёлочи с солями марганца (II) дают белый осадок гидроксида марганца (II):






M
n
S

O

4


+
2
K
O
H

M
n
(
O
H

)

2



+

K

2


S

O

4






{\displaystyle {\mathsf {MnSO_{4}+2KOH\rightarrow Mn(OH)_{2}\downarrow +K_{2}SO_{4}}}}






M

n

2
+


+
2
O

H





M
n
(
O
H

)

2







{\displaystyle {\mathsf {Mn^{2+}+2OH^{-}\rightarrow Mn(OH)_{2}\downarrow }}}

Осадок на воздухе меняет цвет на бурый из-за окисления кислородом воздуха.

Выполнение реакции. К двум каплям раствора соли марганца добавляют две капли раствора щёлочи. Наблюдают изменение цвета осадка.

2. Пероксид водорода в присутствии щёлочи окисляет соли марганца (II) до тёмно-бурого соединения марганца (IV):






M
n
S

O

4


+

H

2



O

2


+
2
N
a
O
H

M
n
O
(
O
H

)

2



+
N

a

2


S

O

4


+

H

2


O




{\displaystyle {\mathsf {MnSO_{4}+H_{2}O_{2}+2NaOH\rightarrow MnO(OH)_{2}\downarrow +Na_{2}SO_{4}+H_{2}O}}}






M

n

2
+


+

H

2



O

2


+
2
O

H





M
n
O
(
O
H

)

2



+

H

2


O




{\displaystyle {\mathsf {Mn^{2+}+H_{2}O_{2}+2OH^{-}\rightarrow MnO(OH)_{2}\downarrow +H_{2}O}}}

Выполнение реакции. К двум каплям раствора соли марганца добавляют четыре капли раствора щёлочи и две капли раствора H2O2.

3. Диоксид свинца PbO2 в присутствии концентрированной азотной кислоты при нагревании окисляет Mn2+ до MnO4 с образованием марганцевой кислоты малинового цвета:






2
M
n
S

O

4


+
5
P
b

O

2


+
6
H
N

O

3



2
H
M
n

O

4


+
2
P
b
S

O

4



+
3
P
b
(
N

O

3



)

2


+
2

H

2


O




{\displaystyle {\mathsf {2MnSO_{4}+5PbO_{2}+6HNO_{3}\rightarrow 2HMnO_{4}+2PbSO_{4}\downarrow +3Pb(NO_{3})_{2}+2H_{2}O}}}






2
M

n

2
+


+
5
P
b

O

2


+
4

H

+



2
M
n

O

4





+
5
P

b

2
+


+
2

H

2


O




{\displaystyle {\mathsf {2Mn^{2+}+5PbO_{2}+4H^{+}\rightarrow 2MnO_{4}^{-}+5Pb^{2+}+2H_{2}O}}}

Эта реакция даёт отрицательный результат в присутствии восстановителей, например хлороводородной кислоты и её солей, так как они взаимодействуют с диоксидом свинца, а также с образовавшейся марганцевой кислотой. При больших количествах марганца провести эту реакцию не удаётся, так как избыток ионов Mn2+ восстанавливает образующуюся марганцевую кислоту HMnO4 до MnO(OH)2, и вместо малиновой окраски появляется бурый осадок. Вместо диоксида свинца для окисления Mn2+ в MnO4 могут быть использованы другие окислители, например, персульфат аммония (NH4)2S2O8 в присутствии катализатора — ионов Ag+ или висмутат натрия NaBiO3:






2
M
n
S

O

4


+
5
N
a
B
i

O

3


+
16
H
N

O

3



2
H
M
n

O

4


+
5
B
i
(
N

O

3



)

3


+
N
a
N

O

3


+
2
N

a

2


S

O

4


+
7

H

2


O




{\displaystyle {\mathsf {2MnSO_{4}+5NaBiO_{3}+16HNO_{3}\rightarrow 2HMnO_{4}+5Bi(NO_{3})_{3}+NaNO_{3}+2Na_{2}SO_{4}+7H_{2}O}}}

Выполнение реакции. В пробирку вносят стеклянным шпателем немного PbO2, а затем 5 капель концентрированной азотной кислоты HNO3 и нагревают смесь на кипящей водяной бане. В нагретую смесь добавляют 1 каплю раствора сульфата марганца (II) MnSO4 и снова нагревают 10—15 мин, встряхивая время от времени содержимое пробирки. Дают избытку диоксида свинца осесть и наблюдают малиновую окраску образовавшейся марганцевой кислоты.

При окислении висмутатом натрия реакцию проводят следующим образом. В пробирку помещают 1—2 капли раствора сульфата марганца (II) и 4 капли 6 н. HNO3, добавляют несколько крупинок висмутата натрия и встряхивают. Наблюдают появление малиновой окраски раствора.

4. Сульфид аммония (NH4)2S осаждает из раствора солей марганца сульфид марганца (II), окрашенный в телесный цвет:






M
n
S

O

4


+
(
N

H

4



)

2


S

M
n
S

+
(
N

H

4



)

2


S

O

4






{\displaystyle {\mathsf {MnSO_{4}+(NH_{4})_{2}S\rightarrow MnS\downarrow +(NH_{4})_{2}SO_{4}}}}






M

n

2
+


+

S

2




M
n
S





{\displaystyle {\mathsf {Mn^{2+}+S^{2-}\rightarrow MnS\downarrow }}}

Осадок легко растворяется в разбавленных минеральных кислотах и даже в уксусной кислоте.

Выполнение реакции. В пробирку помещают 2 капли раствора соли марганца (II) и добавляют 2 капли раствора сульфида аммония.

Биологическая роль и содержание в живых организмах

Марганец содержится в организмах всех растений и животных, хотя его содержание обычно очень мало, порядка тысячных долей процента, он оказывает значительное влияние на жизнедеятельность, то есть является микроэлементом. Марганец оказывает влияние на рост, образование крови и функции половых желёз. Особо богаты марганцем листья свёклы — до 0,03 %, а также большие его количества содержатся в организмах рыжих муравьёв — до 0,05 %. Некоторые бактерии содержат до нескольких процентов марганца.

Избыточное накопление марганца в организме сказывается, в первую очередь, на функционировании центральной нервной системы. Это проявляется в утомляемости, сонливости, ухудшении функций памяти. Марганец является политропным ядом, поражающим также лёгкие, сердечно-сосудистую и гепатобиллиарную системы, вызывает аллергический и мутагенный эффект.

Токсичность

Токсическая доза для человека составляет 40 мг марганца в день. Летальная доза для человека не определена.

При пероральном поступлении марганец относится к наименее ядовитым микроэлементам. Главными признаками отравления марганцем у животных являются угнетение роста, понижение аппетита, нарушение метаболизма железа и изменение функции мозга.

Сообщений о случаях отравления марганцем у людей, вызванных приёмом пищи с высоким содержанием марганца, нет. В основном отравление людей наблюдается в случаях хронической ингаляции больших количеств марганца на производстве. Оно проявляется в виде тяжёлых нарушений психики, включая гиперраздражительность, гипермоторику и галлюцинации — «марганцевое безумие». В дальнейшем развиваются изменения в экстрапирамидной системе, подобные болезни Паркинсона.

Чтобы развилась клиническая картина хронического отравления марганцем, обычно требуется несколько лет. Она характеризуется достаточно медленным нарастанием патологических изменений в организме, вызываемых повышенным содержанием марганца в окружающей среде (в частности, распространение эндемического зоба, не связанного с дефицитом йода).

Месторождение

  • Усинское месторождение марганца

См. также

  • Список стран по производству марганца
  • Отравление марганцем

Примечания

Ссылки

  • Марганец на Webelements.
  • Марганец в Популярной библиотеке химических элементов.
  • Марганец в месторождениях.

Error: 404 Not Found.

Диаграмма Пурбе для марганца

Поделиться ссылкой: