Селен

Селе́н — химический элемент с атомным номером 34. Принадлежит к 16-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к главной подгруппе VI группы, или к группе VIA), находится в четвёртом периоде таблицы. Атомная масса элемента 78,971(8) а. е. м.. Обозначается символом Se (от лат. Selenium). Хрупкий, блестящий на изломе неметалл серого цвета (устойчивая аллотропная форма, неустойчивые формы — различных оттенков красного цвета). Относится к халькогенам.

История

Элемент открыт Й. Я. Берцелиусом в 1817.

Сохранился рассказ самого Берцелиуса о том, как произошло это открытие:

Я исследовал в содружестве с Готлибом Ганом метод, который применяют для производства серной кислоты в Грипсхольме. Мы обнаружили в серной кислоте осадок, частью красный, частью светло-коричневый. Этот осадок, опробованный с помощью паяльной трубки, издавал слабый редечный запах и образовывал свинцовый королёк. Согласно Клапроту, такой запах служит указанием на присутствие теллура. Ган заметил при этом, что на руднике в Фалуне, где собирается сера, необходимая для производства кислоты, также ощущается подобный запах, указывающий на присутствие теллура. Любопытство, вызванное надеждой обнаружить в этом коричневом осадке новый редкий металл, заставило меня исследовать осадок. Приняв намерение отделить теллур, я не смог, однако, открыть в осадке никакого теллура. Тогда я собрал всё, что образовалось при получении серной кислоты путём сжигания фалюнской серы за несколько месяцев, и подверг полученный в большом количестве осадок обстоятельному исследованию. Я нашёл, что масса (то есть осадок) содержит до сих пор неизвестный металл, очень похожий по своим свойствам на теллур. В соответствии с этой аналогией я назвал новое тело селеном (Selenium) от греческого σελήνη (луна), так как теллур назван по имени Tellus — нашей планеты.

В 1873 году Уиллоуби Смит обнаружил, что электрическое сопротивление серого селена зависит от освещённости. Это свойство стало основой для чувствительных к свету ячеек. Первый коммерческий продукт на основе селена был представлен на рынке в середине 1870-х годов Вернером фон Сименсом. Селеновая ячейка использовалась в фотофоне, созданном Александром Беллом в 1879 году. Электрический ток, проходящий через селен, пропорционален количеству света, падающему на его поверхность, — это свойство использовано в различных измерителях освещённости (экспонометрах). Полупроводниковые свойства селена нашли применение в других областях электроники В 1930-е годы началось развитие селеновых выпрямителей, которые пришли на смену медно-закисным выпрямителям благодаря высокой эффективности Селеновые выпрямители использовались до 1970-х годов, когда им на смену пришли кремниевые выпрямители.

В более позднее время была обнаружена токсичность селена. Были зарегистрированы случаи отравления людей, работавших на селеновых производствах, а также животных, поедавших богатые селеном растения. В 1954 году были обнаружены первые признаки биологического значения селена для микроорганизмов. В 1957 году была установлена важная роль селена в биологии млекопитающих. В 1970-е годы было показано наличие селена в двух независимых группах энзимов, а затем обнаружен селеноцистеин в белках. В 1980-е годы было установлено, что селеноцистеин кодируется кодоном UGA. Механизм кодирования был установлен сначала для бактерий, а затем для млекопитающих (SECIS-элемент).

Смотреть:
Брюшко

Происхождение названия

Название происходит от греч. σελήνη — Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).

Нахождение в природе

Содержание селена в земной коре — около 500 мг/т. Основные черты геохимии селена в земной коре определяются близостью его ионного радиуса к ионному радиусу серы. Селен образует 37 минералов, среди которых в первую очередь должны быть отмечены ашавалит FeSe, клаусталит PbSe, тиманнит HgSe, гуанахуатит Bi2(Se, S)3, хастит CoSe2, платинит PbBi2(S, Se)3, ассоциирующие с различными сульфидами, а иногда также с касситеритом. Изредка встречается самородный селен. Главное промышленное значение на селен имеют сульфидные месторождения. Содержание селена в сульфидах колеблется от 7 до 110 г/т. Концентрация селена в морской воде 0,4 мкг/л. На территории Кавказских минеральных вод есть источник с содержанием селена 110 мкг/л.

Получение

Значительные количества селена получают из шлама медно-электролитных производств, в котором селен присутствует в виде селенида серебра. Применяют несколько способов получения: окислительный обжиг с возгонкой SeO2; нагревание шлама с концентрированной серной кислотой, окисление соединений селена до SeO2 с его последующей возгонкой; окислительное спекание с содой, конверсия полученной смеси соединений селена до соединений Se(IV) и их восстановление до элементного селена действием SO2.

Получить высоко чистый селен можно при сжигании низкосортного технического селена в токе кислорода при 500—550° С и сублимации полученной двуокиси селена при 320—350° С. Двуокись селена растворяют в дистиллированной воде. А затем восстанавливая H2SeO3 сернистым газом:

SeO2 + H2O → H2SeO3,

H2SeO3 + 2SО2 + H2O → Se + 2H24.

При окислительном методе ил обрабатывается азотной кислотой, сплавляется с селитрой и т. д. Образующиеся при этом окислы селена (SeО2, иногда SeО3) переходят в раствор, и по выпаривании азотной кислоты выпавший сухой остаток растворяется в концентрированной соляной кислоте, после чего SeO2 восстанавливается, например, сернистым газом:

2H2О+SeО2+2SО2=2H2SО4+Se.

При растворении в сульфите натрия с последующим выделением селена кислотой:

Na2SO3+Se=Na2S+SeО3.

Промытый от сернистой кислоты ил с содержанием, например, 2 % селена обрабатывается содой, причем сульфат свинца переходит в карбонат:

PbSО4+Na23=PbCО3+Na24;

Физические свойства

Твёрдый селен при нормальных условиях имеет несколько аллотропных модификаций с существенно различными термодинамическими, механическими и электрическими свойствами:

  • Серый кристаллический селен (γ-Se, «металлический селен») — наиболее устойчивая модификация, структура состоит из параллельных спиральных цепей. Получают конденсацией паров, медленным охлаждением расплава, длительным нагреванием других форм селена. Образует кристаллы гексагональной сингонии, пространственная группа C312, параметры ячейки a = 0,436388 нм, c = 0,495935 нм, Z = 3, d = 4,807 г/см3. Температура плавления 221 °C. Температура кипения 685 °C. Плотность жидкого серого селена при температуре плавления 4,06 г/см3. Твёрдость по Моосу 2,0. Твёрдость по Бриннелю ≈750 МПа. Модуль нормальной упругости 10,2 ГПа. Хрупок, выше 60 °C становится пластичным. Теплопроводность 0,5 Вт/(м·К). Температурный коэффициент линейного расширения 25,5·10−6 К−1 (при 0 °C). Является полупроводником с дырочной проводимостью, ширина запрещённой зоны 1,8 эВ, удельное электрическое сопротивление 80 Ом·м, температурный коэффициент сопротивления 0,6·10−3 К−1 (в интервале температур +25…+125 °C). Диамагнетик, магнитная восприимчивость −0,469·10−9.
  • Красный кристаллический селен — три моноклинные модификации, содержащие кольцевые коронообразные молекулы Se8, получаются осаждением из растворов селена в сероуглероде:
    • Оранжево-красный α-Se. Кристаллы моноклинной сингонии, пространственная группа P21/n, параметры ячейки a = 0,9054 нм, b = 0,9083 нм, c = 1,1601 нм, β = 90,81°, Z = 32, d = 4,46 г/см3. Температура плавления 170 °C.
    • Тёмно-красный β-Se. Кристаллы моноклинной сингонии, пространственная группа P21/a, параметры ячейки a = 1,285 нм, b = 0,807 нм, c = 0,931 нм, β = 93,13°, Z = 32, d = 4,50 г/см3. Температура плавления 180 °C.
    • Красный γ-Se. Кристаллы моноклинной сингонии, пространственная группа P21/c, параметры ячейки a = 1,5018 нм, b = 1,4713 нм, c = 0,8789 нм, β = 93,61°, Z = 64, d = 4,33 г/см3.
  • Красный аморфный селен. Мелкий порошок от ярко-красного до красновато-чёрного цвета, молекулы с цепочечной структурой. Плотность 4,26 г/см3. Получается восстановлением селенистой кислоты на холоду и другими путями.
  • Чёрный стекловидный селен. Получается при быстром охлаждении расплава. Хрупок. Имеет стеклянный блеск. Цвет от голубовато-чёрного до красно-коричневого. Содержит в основном плоские цепочечные зигзагообразные молекулы. Плотность 4,28 г/см3. Изолятор, удельное электрическое сопротивление ≈1010 Ом·м.
Смотреть:
Кубическая сингония

При нагревании серого селена он даёт серый же расплав, а при дальнейшем нагревании испаряется с образованием коричневых паров. При резком охлаждении паров селен конденсируется в виде красной аллотропной модификации.

При высоких давлениях (от 27 МПа) селен переходит в кубическую модификацию с ребром ячейки 0,2982 нм. Получена также метастабильная гексагональная модификация с металлическими свойствами (при 10—12 МПа, из аморфного и моноклинного селена).

Химические свойства

Селен — аналог серы и проявляет степени окисления −2 (H2Se), +4 (SeO2) и +6 (H2SeO4). Однако, в отличие от серы, соединения селена в степени окисления +6 — сильнейшие окислители, а соединения селена (−2) — гораздо более сильные восстановители, чем соответствующие соединения серы.

Простое вещество селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно.

Окислить селен удаётся только при дополнительном нагревании, при котором он медленно горит синим пламенем, превращаясь в диоксид SeO2. Со щелочными металлами селен реагирует (весьма бурно), только будучи расплавленным.






S
e
+

O

2








250

o


C





S
e

O

2






{\displaystyle {\mathsf {Se+O_{2}{\xrightarrow[{250^{o}C}]{}}SeO_{2}}}}






S
e
+
2

H

2


S

O

4



S
e

O

2


+
2
S

O

2


+
2

H

2


O




{\displaystyle {\mathsf {Se+2H_{2}SO_{4}\rightarrow SeO_{2}+2SO_{2}+2H_{2}O}}}

Образует селениды:






S
e
+
2
K


K

2


S
e




{\displaystyle {\mathsf {Se+2K\rightarrow K_{2}Se}}}

При комнатной температуре реагирует с галогенами:






2
S
e
+
5

F

2



S
e

F

4


+
S
e

F

6






{\displaystyle {\mathsf {2Se+5F_{2}\rightarrow SeF_{4}+SeF_{6}}}}






S
e
+
2
C

l

2



S
e
C

l

4






{\displaystyle {\mathsf {Se+2Cl_{2}\rightarrow SeCl_{4}}}}






3
S
e
+
3
B

r

2



S

e

2


B

r

2


+
S
e
B

r

4






{\displaystyle {\mathsf {3Se+3Br_{2}\rightarrow Se_{2}Br_{2}+SeBr_{4}}}}






S
e
+
2

I

2


+
3

H

2


O


H

2


S
e

O

3


+
4
H
I




{\displaystyle {\mathsf {Se+2I_{2}+3H_{2}O\rightarrow H_{2}SeO_{3}+4HI}}}

Реагирует с щелочами:






3
S
e
+
6
N
a
O
H

N

a

2


S
e

O

3


+
2
N

a

2


S
e
+
3

H

2


O




{\displaystyle {\mathsf {3Se+6NaOH\rightarrow Na_{2}SeO_{3}+2Na_{2}Se+3H_{2}O}}}

Биологическая роль

Входит в состав активных центров некоторых белков в форме аминокислоты селеноцистеина. Является необходимым для жизни микроэлементом, но большинство соединений достаточно токсичны (селеноводород, селеновая и селенистая кислота) даже в средних концентрациях.

Роль селена в организме человека

В организме человека содержится 10—14 мг селена, бо́льшая его часть сконцентрирована в печени, почках, селезёнке, сердце, яичках и семенных канатиках у мужчин. Селен присутствует в ядре клетки.

Суточная потребность человека в селене составляет 70-100 мкг. Повышенное содержание селена в организме может приводить к депрессии, тошноте, рвоте, диарее, поражению ЦНС и др.

Согласно данным эпидемиологических исследований 1990-х годов, более чем у 80 % россиян наблюдается дефицит селена.

Селен, являясь химическим аналогом серы, входит в состав биосубстратов в степени окисления – 2. Установлено, что он накапливается в ногтях и волосах, так как их основу составляют серосодержащие аминокислоты цистеин и метионин. Метионин необходим для синтеза кератина – основного белка волосяного стержня, а цистеин входит в состав α-кератинов — основного белка ногтей, кожи и волос (известно, что данные две аминокислоты метаболически тесно связаны между собой; очевидно, селен замещает серу в этих аминокислотах, превращая их в селеноцистеин и селенометионин).

Селен в организме взаимодействует с витаминами, ферментами и биологическими мембранами, участвует в регуляции обмена веществ, в обмене жиров, белков и углеводов, а также в окислительно-восстановительных процессах. Селен является составным компонентом более 30 жизненно важных биологически активных соединений организма. Селен входит в активный центр ферментов системы антиоксидантно-антирадикальной защиты организма, метаболизма нуклеиновых кислот, липидов, гормонов (глутатионпероксидазы, йодотиронин-дейододиназы, тиоредоксинредуктазы, фосфоселенфосфатазы, фосфолипид-гидропероксид-глутатионпероксидазы, специфических протеинов Р и W и др.).

Селен входит в состав белков мышечной ткани, белков миокарда. Также селен способствует образованию трийодтиронина (биологически активная форма тиреоидных гормонов щитовидной железы).

Селен является синергистом витамина E и иода. При дефиците селена иод плохо усваивается организмом. Согласно исследованиям, селен необходим для нормального функционирования иммунной системы. Он задействован в механизмах противодействия вирусным инфекциям, включая ВИЧ. Было доказано, что у пациентов, уже заразившихся ВИЧ, он замедляет переход заболевания в СПИД.

Применение

  • Одним из важнейших направлений его технологии, добычи и потребления являются полупроводниковые свойства как самого селена, так и его многочисленных соединений (селенидов), их сплавов с другими элементами, в которых селен стал играть ключевую роль. В современной технологии полупроводников применяются селениды многих элементов, например, селениды олова, свинца, висмута, сурьмы, лантаноидов. Особенно важны свойства фотоэлектрические и термоэлектрические как самого селена, так и селенидов.
  • Радиоактивный изотоп селен-75 используется в качестве источника гамма-излучения для дефектоскопии.
  • Селенид калия совместно с пятиокисью ванадия применяется при термохимическом получении водорода и кислорода из воды (селеновый цикл).
  • Полупроводниковые свойства селена в чистом виде широко использовались в середине XX века для изготовления выпрямителей, особенно в военной технике по следующим причинам: в отличие от германия и кремния, селен малочувствителен к радиации, и, кроме того, селеновый выпрямительный диод самовосстанавливается при пробое: место пробоя испаряется и не приводит к короткому замыканию, допустимый ток диода несколько снижается, но изделие остается функциональным. К недостаткам селеновых выпрямителей относятся их значительные габариты.
  • Соединения селена применяются для окрашивания стекла в красный и розовый цвет. Обычно используют металлический селен и селенистокислый натрий Na2SeO3. Красные стекла, окрашенные селеном, называют селеновым рубином. Селен применялся при производстве стекла рубиновых звёзд Московского Кремля.

Применение селена в медицине

Селен применяется как мощное противораковое средство, а также для профилактики широкого спектра заболеваний. Из-за его влияния на репарацию ДНК, апоптоз, эндокринную и иммунную системы, а также другие механизмы, включая его антиоксидантные свойства, селен может играть роль в профилактике рака. Согласно исследованиям, приём 200 мкг селена в сутки снижает риск заболеваемости раком прямой и толстой кишки на 58 %, опухолями простаты — на 63 %, раком легких — на 46 %, снижает общую смертность от онкологических заболеваний на 39 %.

Прием селена в комбинации с коэнзимом Q10 связывают с 55%-ым снижением риска смерти больных хронической сердечной недостаточностью.

Малые концентрации селена подавляют гистамин и за счёт этого оказывают антидистрофический эффект и противоаллергическое действие. Также селен стимулирует пролиферацию тканей, улучшает функцию половых желез, сердца, щитовидной железы, иммунной системы.

В комплексе с йодом селен используется для лечения йододефицитных заболеваний и патологий щитовидной железы. Тем не менее, согласно кокрановскому обзору 2014 года, доказательства, подтверждающие или опровергающие эффективность приёма селена людьми с аутоиммунным тиреоидитом, неполны и ненадёжны.

Соли селена способствуют восстановлению пониженного артериального давления при шоке и коллапсе..

Есть данные, что приём добавок с селеном повышает риск развития сахарного диабета 2-го типа.

Токсичность

Общий характер воздействия селена и его соединений

Селен и его соединения ядовиты, по характеру действия несколько напоминает мышьяк; обладает политропным действием с преимущественным поражением печени, почек и ЦНС. Металлический селен менее ядовит. Из неорганических соединений селена наиболее токсичными являются селеноводород, диоксид селена (ЛД50 = 1,5 мг/кг, крысы, интратрахеально) и селениты натрия (ЛД50 = 2,25 мг/кг, кролик, перорально) и лития (ЛД50 = 8,7 мг/кг, крысы, перорально). Особенно токсичен селеноводород, однако, ввиду его отвратительного запаха, ощущаемого даже в ничтожных концентрациях (0,005 мг/л), удаётся избежать отравлений. Органические соединения селена, такие как алкил- или арил-производные (например, диметилселен, метилэтилселен или дифенилселен), являются сильнейшими нервными ядами, с очень отвратительными запахами; так, порог восприятия для диэтилселена составляет 0,0064 мкг/л.

Отравление

При попадании металлического порошкового селена в количестве 1 грамма перорально вызывает боль в животе в течение двух суток и учащённый стул, со временем симптомы проходят.

Действие на кожу

Соли селена при непосредственном соприкосновении с кожей вызывают ожоги и дерматиты. Диоксид селена при контакте с кожей способен вызывать резкую боль и онемение. При попадании на слизистые оболочки соединения селена могут вызывать раздражение и покраснение, при попадании в глаза резкую боль, слезотечение и конъюнктивит.

Изотопы

Селен в природе состоит из 6 изотопов: 74Se (0,87 %), 76Se (9,02 %), 77Se (7,58 %), 78Se (23,52 %), 80Se (49,82 %), 82Se (9,19 %). Из них пять, насколько это известно, стабильны, а один (82Se) испытывает двойной бета-распад с периодом полураспада 9,7⋅1019 лет. Кроме того, искусственно созданы ещё 24 радиоактивных изотопа (а также 9 метастабильных возбуждённых состояний) в диапазоне массовых чисел от 65 до 94. Из искусственных изотопов применение нашел 75Se как источник гамма-излучения для неразрушающего контроля сварных швов и целостности конструкций.

Периоды полураспада некоторых радиоактивных изотопов селена:

Примечания

Ссылки

  • Селен на Webelements
  • Селен в Популярной библиотеке химических элементов
  • Селен на сайте Петера ван дер Крогта (англ.)


Error: 404 Not Found.

Натуральный селен

Error: 404 Not Found.

Монокристаллический селен (99,9999 %)

Поделиться ссылкой: